Nucleophilic Fluoroalkylation

Nucleophilic Fluoroalkylation

Overall Score4
  • Generality
  • Reagent Availability
  • Experimental User Friendliness
  • Criteria #4
  • Criteria #5
  • General Characteristics

When one wants to introduce perfluoroalkyl groups onto carbonyl groups by nucleophilic addition, she/he needs fluorine-containing organometallic reagents. However, these reagents are not very stable and only few practical procedures are available. Even today, this is a developing area that has a room for further improvement.

The introduction of trifluoromethyl (CF3) group is the simplest. Typical conditions are Me3SiCF3 + F (the Ruppert-Prakash reaction).

  • General References

<Ruppert-Prakash>

  • Surya Prakash, G. K.; Krishmnamurti, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111, 393. DOI: 10.1021/ja00183a073
  • Surya Prakash, G. K.; Panja, C.; Baghoo, H.; Surampudi, V.; Kultyshev, R.; Mandal, M.; Rasul, G.; Mathew, T.; Olah, G. A. J. Org. Chem. 2006,71, 6586. doi:10.1021/jo060835d

<review>

  • Reaction Mechanism

Fluorine-containing organometallic reagents are prone to decomposition through pathways such as these:

nu_fluoroalkyl_7.gif

  • Examples

A pentafluoroethylating reagent that can be activated by alkoxide.[1]

nu_fluoroalkyl_2.gif

The conditions involving in situ generation of perfluoroalkyltin (IV). The reagent is stable at room temperature and easily used. This procedure works well for fluoroalkylations other than trifluoromethylation.[2]

nu_fluoroalkyl_3.gif

A newer system that uses DBU-hexafluoroacetone salt. The reagent is a solid that can be prepared on a large scale from inexpensive materials.[3]

nu_fluoroalkyl_4.gif

A borate-type trifluoromethylation reagent, which can be handled with ease.[4]

nu_fluoroalkyl_5.gif

An interesting way to introduce difluoroester by Ru-catalyzed Reformatsky-type reaction.[5]

nu_fluoroalkyl_6.gif

  • Experimental Procedure

  • Experimental Tips

  • References

[1] Surya Prakash, G. K.; Wang, Y.; Mogi, R.; Hu, J.; Mathew, T.; Olah, G. A. Org. Lett. 2010, 12, 2932. doi:10.1021/ol100918d

[2] Kitazume, T.; Ishikawa, N. Chem. Lett. 1981, 1337. doi:10.1246/cl.1981.1337

[3] Riofski, M. V.; Hart, A. D.; Colby, D. A. Org. Lett. 2012, ASAP. doi:10.1021/ol303291x

[4] Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. Tetrahedron Lett. 2011, 52, 281. doi:10.1016/j.tetlet.2010.11.025

[5] Sato, K.; Tarui, A.; Kita, T.; Ishida, Y.; Tamura, H.; Omote, M.; Ando, A.; Kumadaki, I. Tetrahedron Lett. 2004, 45, 5735. doi:10.1016/j.tetlet.2004.05.099

  • Related Reactions

Amii Trifluoromethylation 

Electrophilic Trifluoromethylation

Burton Trifluoromethylation

Electrophilic Fluorination Reagent

Balz-Schiemann Reaction

Deoxofluorination

  • Related Books

[amazonjs asin=”0470021772″ locale=”US” title=”Fluorine-Containing Reagents (Hdbk of Reagents for Organic Synthesis)”]

[amazonjs asin=”111807856X” locale=”US” title=”Efficient Preparations of Fluorine Compounds”]

[amazonjs asin=”1848166346″ locale=”US” title=”Fluorine in Pharmaceutical and Medicinal ChemistryFrom Biophysical Aspects to Clinical Applications (Molecular Medicine and Medicinal Chemistry)”]

[amazonjs asin=”B001DADOFY” locale=”US” title=”Bioorganic and Medicinal Chemistry of Fluorine”]

  • External Links

,