Roger Kornberg

Roger Kornberg

Roger D. Kornberg (born 1947), biochemist who received the Nobel Prize in Chemistry in 2006 for his research on the molecular basis of eukaryotic transcription. His father, Arthur Kornberg, who won the Nobel Prize in Medicine in 1959 for showing how genetic information is carried between DNA molecules. Roger Kornberg’s brother, Thomas, is also a scientist. He isolated DNA polymerase III used for replication. Kornberg’s other brother is an architect and designs research laboratories.

As he said in an interview:

Science was a part of dinner conversation and an activity in the afternoons and on weekends. Both my parents had fine scientific minds and taught by example how to approach questions and problems in a logical, dispassionate way. Scientific reasoning became second nature. Above all, the joy of science became evident to my brothers and me. (authority:http://www.dnaftb.org)

 

  • Education and Experiences

1967 B.S. in Chemistry from Harvard University

1972  Ph.D. in Chemistry from Stanford University

1972 Research Associate, Biochemistry, Medical Research Council in Cambridge

1976 Assistant Professor, Harvard Medical School

1978- Professor, Stanford University

 

  •  Awards and Honors

1981 Eli Lilly Award in Biological Chemistry

1982 Passano Award, Passano Foundation

1990  Ciba-Drew Award

1997 Harvey Prize

2001 Welch Prize

2002 ASBMB-Merck Award

2002 Pasarow Award in Cancer Research

2002 Leopold Mayer Prize

2002 Le Grand Prix Charles-Leopold Mayer

2005 Alfred P. Sloan Jr. Prize

2006 Nobel Prize in Chemistry

2006 Louisa Gross Horwitz Prize

  • Research

In 1974, Kornberg discovered the nucleosome, the basic unit from which all chromosomes are made.[1]

The organizing principle of the nucleosome, a histoneThe Histones octamer, and its mode of interaction with DNA were deduced from the properties of the tetramer, as follows:

(1) The stoichiometry of the tetramer indicated that apparent deviations from equimolar amounts of H2A, H2B, H3, and H4 in chromatin could be disregarded, and it further implied a repeating unit that contained two each of the histones. The requirement for all four histones to form the repeating unit revealed by X-ray diffraction then led to the proposal of the histone octamer.

(2) Based on the roughly equal weights of histone and DNA in chromatin, an octamer would be associated with about 200 base pairs of DNA.

(3) The biochemical behavior of the tetramer, like that of a typical globular protein, implied a compact shape and thus the wrapping of the DNA on the outside.

(4) The occurrence in chromatin of roughly half as much H1 as each of the other histones pointed to the association of one molecule of H1 with the nucleosome. The lack of a requirement for H1 to reconstitute the X-ray diffraction pattern suggested that H1 bound on the the outside of the nucleosome.

768px-Nucleosome_1KX5_colour_coded

 

The crystal structure of the nucleosome core particle consisting of H2A , H2B , H3 and H4 core histones, and DNA. (adapted from Wikipedia).

 

In 2001, Kornberg published the first molecular snapshot of the protein machinery responsible — RNA polymerase — in action.[2]

transcriptionprocess

 

The transcription process as depicted by Roger Kornberg in 2001. RNA-polymerase in white, DNA-helix in blue and the growing RNA-strand in red (adapted from Nobelprize.org ).

 

  • References

[1] Kornberg, R.D. Science 1974184, 868. 【Pubmed

[2] a) Cramer, P.; Bushnell D.A.; Kornberg, R.D. Science 2001292, 1863. 【Pubmed】;b) Gnatt, A.L.; Cramer, P.; Fu, J.; Bushnell, D.A: Kornberg, R.D. Science 2001292, 1876.【Pubmed

 

  • Related Links

Roger Kornberg Laboratory

Roger D. Kornberg – Wikipedia

 

  • Photo Gallery

  • Movies




  • Related Books

 

Leave a Reply

Your email address will not be published. Required fields are marked *